Papers
Topics
Authors
Recent
2000 character limit reached

The Symbolic Interior Point Method (1605.08187v3)

Published 26 May 2016 in cs.AI, cs.LO, and cs.SC

Abstract: A recent trend in probabilistic inference emphasizes the codification of models in a formal syntax, with suitable high-level features such as individuals, relations, and connectives, enabling descriptive clarity, succinctness and circumventing the need for the modeler to engineer a custom solver. Unfortunately, bringing these linguistic and pragmatic benefits to numerical optimization has proven surprisingly challenging. In this paper, we turn to these challenges: we introduce a rich modeling language, for which an interior-point method computes approximate solutions in a generic way. While logical features easily complicates the underlying model, often yielding intricate dependencies, we exploit and cache local structure using algebraic decision diagrams (ADDs). Indeed, standard matrix-vector algebra is efficiently realizable in ADDs, but we argue and show that well-known optimization methods are not ideal for ADDs. Our engine, therefore, invokes a sophisticated matrix-free approach. We demonstrate the flexibility of the resulting symbolic-numeric optimizer on decision making and compressed sensing tasks with millions of non-zero entries.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.