Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation by Quantization (1202.3723v1)

Published 14 Feb 2012 in cs.AI

Abstract: Inference in graphical models consists of repeatedly multiplying and summing out potentials. It is generally intractable because the derived potentials obtained in this way can be exponentially large. Approximate inference techniques such as belief propagation and variational methods combat this by simplifying the derived potentials, typically by dropping variables from them. We propose an alternate method for simplifying potentials: quantizing their values. Quantization causes different states of a potential to have the same value, and therefore introduces context-specific independencies that can be exploited to represent the potential more compactly. We use algebraic decision diagrams (ADDs) to do this efficiently. We apply quantization and ADD reduction to variable elimination and junction tree propagation, yielding a family of bounded approximate inference schemes. Our experimental tests show that our new schemes significantly outperform state-of-the-art approaches on many benchmark instances.

Citations (19)

Summary

We haven't generated a summary for this paper yet.