Papers
Topics
Authors
Recent
2000 character limit reached

Colored operads, series on colored operads, and combinatorial generating systems

Published 16 May 2016 in math.CO and cs.FL | (1605.04697v2)

Abstract: We introduce bud generating systems, which are used for combinatorial generation. They specify sets of various kinds of combinatorial objects, called languages. They can emulate context-free grammars, regular tree grammars, and synchronous grammars, allowing us to work with all these generating systems in a unified way. The theory of bud generating systems uses colored operads. Indeed, an object is generated by a bud generating system if it satisfies a certain equation in a colored operad. To compute the generating series of the languages of bud generating systems, we introduce formal power series on colored operads and several operations on these. Series on colored operads are crucial to express the languages specified by bud generating systems and allow us to enumerate combinatorial objects with respect to some statistics. Some examples of bud generating systems are constructed; in particular to specify some sorts of balanced trees and to obtain recursive formulas enumerating these.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.