Papers
Topics
Authors
Recent
2000 character limit reached

Forman curvature for directed networks

Published 16 May 2016 in q-bio.MN, cond-mat.dis-nn, and physics.soc-ph | (1605.04662v2)

Abstract: A goal in network science is the geometrical characterization of complex networks. In this direction, we (arXiv:1603.00386; J. Stat. Mech. (2016) P063206) have recently introduced the Forman's discretization of Ricci curvature to the realm of undirected networks. Investigation of Forman curvature in diverse model and real-world undirected networks revealed that this measure captures several aspects of the organization of complex undirected networks. However, many important real-world networks are inherently directed in nature, and the Forman curvature for undirected networks is unsuitable for analysis of such directed networks. Hence, we here extend the Forman curvature for undirected networks to the case of directed networks. The simple mathematical formula for the Forman curvature in directed networks elegantly incorporates node weights, edge weights and edge direction. By applying the Forman curvature for directed networks to a variety of model and real-world directed networks, we show that the measure can be used to characterize the structure of complex directed networks. Furthermore, our results also hold in real directed networks which are weighted or spatial in nature. These results in combination with our previous results suggest that the Forman curvature can be readily employed to study the organization of both directed and undirected complex networks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.