Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Random Forests (1604.07143v2)

Published 25 Apr 2016 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems.

Citations (109)

Summary

  • The paper introduces hybrid models that restructure randomized regression trees as multilayer neural networks, reducing parameter tuning.
  • The paper demonstrates consistency and excellent performance of the proposed methods across diverse synthetic and real datasets.
  • The paper leverages prior knowledge from regression trees to design network architectures with flexible decision boundaries, bridging classical and deep learning approaches.

Abstract: Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.