Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive non-parametric instrumental regression in the presence of dependence (1604.01992v1)

Published 7 Apr 2016 in math.ST and stat.TH

Abstract: We consider the estimation of a structural function which models a non-parametric relationship between a response and an endogenous regressor given an instrument in presence of dependence in the data generating process. Assuming an independent and identically distributed (iid.) sample it has been shown in Johannes and Schwarz (2010) that a least squares estimator based on dimension reduction and thresholding can attain minimax-optimal rates of convergence up to a constant. As this estimation procedure requires an optimal choice of a dimension parameter with regard amongst others to certain characteristics of the unknown structural function we investigate its fully data-driven choice based on a combination of model selection and Lepski's method inspired by Goldenshluger and Lepski (2011). For the resulting fully data-driven thresholded least squares estimator a non-asymptotic oracle risk bound is derived by considering either an iid. sample or by dismissing the independence assumption. In both cases the derived risk bounds coincide up to a constant assuming sufficiently weak dependence characterised by a fast decay of the mixing coefficients. Employing the risk bounds the minimax optimality up to constant of the estimator is established over a variety of classes of structural functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.