Singular limit analysis of a model for earthquake faulting
Abstract: In this paper we consider the one dimensional spring-block model describing earthquake faulting. By using geometric singular perturbation theory and the blow-up method we provide a detailed description of the periodicity of the earthquake episodes. In particular, the limit cycles arise from a degenerate Hopf bifurcation whose degeneracy is due to an underlying Hamiltonian structure that leads to large amplitude oscillations. We use a Poincar\'e compactification to study the system near infinity. At infinity the critical manifold loses hyperbolicity with an exponential rate. We use an adaptation of the blow-up method to recover the hyperbolicity. This enables the identification of a new attracting manifold that organises the dynamics at infinity. This in turn leads to the formulation of a conjecture on the behaviour of the limit cycles as the time-scale separation increases. We illustrate our findings with numerics and suggest an outline of the proof of this conjecture.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.