Geometric analysis of Oscillations in the Frzilator model
Abstract: A biochemical oscillator model, describing developmental stage of myxobacteria, is analyzed mathematically. Observations from numerical simulations show that in a certain range of parameters, the corresponding system of ordinary differential equations displays stable and robust oscillations. In this work, we use geometric singular perturbation theory and blow-up method to prove the existence of a strongly attracting limit cycle. This cycle corresponds to a relaxation oscillation of an auxiliary system, whose singular perturbation nature originates from the small Michaelis-Menten constants of the biochemical model. In addition, we give a detailed description of the structure of the limit cycle, and the timescales along it.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.