Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Forms of Cluster Variables on Double Bruhat Cells G^{u,e} of type B (1602.08587v6)

Published 27 Feb 2016 in math.QA

Abstract: Let $G$ be a simply connected simple algebraic group over $\mathbb{C}$ of type $B_r$, $B$ and $B_-$ be its two opposite Borel subgroups, and $W$ be the associated Weyl group. For $u$, $v\in W$, it is known that the coordinate ring ${\mathbb C}[G{u,v}]$ of the double Bruhat cell $G{u,v}=BuB\cap B_-vB_-$ is isomorphic to an upper cluster algebra $\overline{\mathcal{A}}(\textbf{i})_{{\mathbb C}}$ and the generalized minors $\Delta(k;\textbf{i})$ are the cluster variables of ${\mathbb C}[G{u,v}]$[A.Berenstein, S.Fomin, A.Zelevinsky, Duke Math. J. 126 (2005), 1-52, arxiv:math.RT/0305434]. Recently, it is also shown that ${\mathbb C}[G{u,v}]$ have structure of cluster algebra [K. R. Goodearl, M. T. Yakimov, arxiv:1602.00498 (2016)]. In the case $v=e$, we shall describe the generalized minor $\Delta(k;\textbf{i})$ explicitly.

Summary

We haven't generated a summary for this paper yet.