Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Weak Passivity Based Stabilization of Stochastic Systems with Nonvanishing Noise

Published 24 Feb 2016 in math.DS and math.OC | (1602.07406v2)

Abstract: For stochastic systems with nonvanishing noise, i.e., at the desired state the noise port does not vanish, it is impossible to achieve the global stability of the desired state in the sense of probability. This bad property also leads to the loss of stochastic passivity at the desired state if a radially unbounded Lyapunov function is expected as the storage function. To characterize a certain (globally) stable behavior for such a class of systems, the stochastic asymptotic weak stability is proposed in this paper which suggests the transition measure of the state to be convergent and the ergodicity. By defining stochastic weak passivity that admits stochastic passivity only outside a ball centered around the desired state but not in the whole state space, we develop stochastic weak passivity theorems to ensure that the stochastic systems with nonvanishing noise can be globally\locally stabilized in weak sense through negative feedback law. Applications are shown to stochastic linear systems and a nonlinear process system, and some simulation are made on the latter further.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.