Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Effective Sample Size for Importance Sampling based on discrepancy measures (1602.03572v5)

Published 10 Feb 2016 in stat.CO

Abstract: The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an approximation $\widehat{ESS}$ of the theoretical ESS definition is widely applied, involving the inverse of the sum of the squares of the normalized importance weights. This formula, $\widehat{ESS}$, has become an essential piece within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From another perspective, the expression $\widehat{ESS}$ is related to the Euclidean distance between the probability mass described by the normalized weights and the discrete uniform probability mass function (pmf). In this work, we derive other possible ESS functions based on different discrepancy measures between these two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the discrete entropy (including theperplexity measure, already proposed in literature) and the Gini coefficient among others. We list five theoretical requirements which a generic ESS function should satisfy, allowing us to classify different ESS measures. We also compare the most promising ones by means of numerical simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.