Common probability patterns arise from simple invariances (1602.03559v2)
Abstract: Shift and stretch invariance lead to the exponential-Boltzmann probability distribution. Rotational invariance generates the Gaussian distribution. Particular scaling relations transform the canonical exponential and Gaussian patterns into the variety of commonly observed patterns. The scaling relations themselves arise from the fundamental invariances of shift, stretch, and rotation, plus a few additional invariances. Prior work described the three fundamental invariances as a consequence of the equilibrium canonical ensemble of statistical mechanics or the Jaynesian maximization of information entropy. By contrast, I emphasize the primacy and sufficiency of invariance alone to explain the commonly observed patterns. Primary invariance naturally creates the array of commonly observed scaling relations and associated probability patterns, whereas the classical approaches derived from statistical mechanics or information theory require special assumptions to derive commonly observed scales.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.