Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Role of Typicality in Object Classification: Improving The Generalization Capacity of Convolutional Neural Networks (1602.02865v1)

Published 9 Feb 2016 in cs.CV, cs.LG, and cs.NE

Abstract: Deep artificial neural networks have made remarkable progress in different tasks in the field of computer vision. However, the empirical analysis of these models and investigation of their failure cases has received attention recently. In this work, we show that deep learning models cannot generalize to atypical images that are substantially different from training images. This is in contrast to the superior generalization ability of the visual system in the human brain. We focus on Convolutional Neural Networks (CNN) as the state-of-the-art models in object recognition and classification; investigate this problem in more detail, and hypothesize that training CNN models suffer from unstructured loss minimization. We propose computational models to improve the generalization capacity of CNNs by considering how typical a training image looks like. By conducting an extensive set of experiments we show that involving a typicality measure can improve the classification results on a new set of images by a large margin. More importantly, this significant improvement is achieved without fine-tuning the CNN model on the target image set.

Citations (15)

Summary

We haven't generated a summary for this paper yet.