Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NeRD: a Neural Response Divergence Approach to Visual Salience Detection (1602.01728v1)

Published 4 Feb 2016 in cs.CV

Abstract: In this paper, a novel approach to visual salience detection via Neural Response Divergence (NeRD) is proposed, where synaptic portions of deep neural networks, previously trained for complex object recognition, are leveraged to compute low level cues that can be used to compute image region distinctiveness. Based on this concept , an efficient visual salience detection framework is proposed using deep convolutional StochasticNets. Experimental results using CSSD and MSRA10k natural image datasets show that the proposed NeRD approach can achieve improved performance when compared to state-of-the-art image saliency approaches, while the attaining low computational complexity necessary for near-real-time computer vision applications.

Summary

We haven't generated a summary for this paper yet.