Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding the different patterns in buildings data using bag of words representation with clustering (1602.01398v1)

Published 3 Feb 2016 in cs.AI

Abstract: The understanding of the buildings operation has become a challenging task due to the large amount of data recorded in energy efficient buildings. Still, today the experts use visual tools for analyzing the data. In order to make the task realistic, a method has been proposed in this paper to automatically detect the different patterns in buildings. The K Means clustering is used to automatically identify the ON (operational) cycles of the chiller. In the next step the ON cycles are transformed to symbolic representation by using Symbolic Aggregate Approximation (SAX) method. Then the SAX symbols are converted to bag of words representation for hierarchical clustering. Moreover, the proposed technique is applied to real life data of adsorption chiller. Additionally, the results from the proposed method and dynamic time warping (DTW) approach are also discussed and compared.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Usman Habib (3 papers)
  2. Gerhard Zucker (1 paper)
Citations (9)

Summary

We haven't generated a summary for this paper yet.