Papers
Topics
Authors
Recent
2000 character limit reached

Robust Covariance Estimation for Approximate Factor Models (1602.00719v1)

Published 1 Feb 2016 in stat.ME

Abstract: In this paper, we study robust covariance estimation under the approximate factor model with observed factors. We propose a novel framework to first estimate the initial joint covariance matrix of the observed data and the factors, and then use it to recover the covariance matrix of the observed data. We prove that once the initial matrix estimator is good enough to maintain the element-wise optimal rate, the whole procedure will generate an estimated covariance with desired properties. For data with only bounded fourth moments, we propose to use Huber loss minimization to give the initial joint covariance estimation. This approach is applicable to a much wider range of distributions, including sub-Gaussian and elliptical distributions. We also present an asymptotic result for Huber's M-estimator with a diverging parameter. The conclusions are demonstrated by extensive simulations and real data analysis.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.