Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Firing-Rate Dynamics to Train Recurrent Networks of Spiking Model Neurons (1601.07620v1)

Published 28 Jan 2016 in q-bio.NC

Abstract: Recurrent neural networks are powerful tools for understanding and modeling computation and representation by populations of neurons. Continuous-variable or "rate" model networks have been analyzed and applied extensively for these purposes. However, neurons fire action potentials, and the discrete nature of spiking is an important feature of neural circuit dynamics. Despite significant advances, training recurrently connected spiking neural networks remains a challenge. We present a procedure for training recurrently connected spiking networks to generate dynamical patterns autonomously, to produce complex temporal outputs based on integrating network input, and to model physiological data. Our procedure makes use of a continuous-variable network to identify targets for training the inputs to the spiking model neurons. Surprisingly, we are able to construct spiking networks that duplicate tasks performed by continuous-variable networks with only a relatively minor expansion in the number of neurons. Our approach provides a novel view of the significance and appropriate use of "firing rate" models, and it is a useful approach for building model spiking networks that can be used to address important questions about representation and computation in neural systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.