Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Binary Embedding via Circulant Downsampled Matrix -- A Data-Independent Approach (1601.06342v1)

Published 24 Jan 2016 in cs.IT, cs.CV, cs.LG, and math.IT

Abstract: Binary embedding of high-dimensional data aims to produce low-dimensional binary codes while preserving discriminative power. State-of-the-art methods often suffer from high computation and storage costs. We present a simple and fast embedding scheme by first downsampling N-dimensional data into M-dimensional data and then multiplying the data with an MxM circulant matrix. Our method requires O(N +M log M) computation and O(N) storage costs. We prove if data have sparsity, our scheme can achieve similarity-preserving well. Experiments further demonstrate that though our method is cost-effective and fast, it still achieves comparable performance in image applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.