Papers
Topics
Authors
Recent
2000 character limit reached

Environmental Noise Embeddings for Robust Speech Recognition (1601.02553v2)

Published 11 Jan 2016 in cs.CL

Abstract: We propose a novel deep neural network architecture for speech recognition that explicitly employs knowledge of the background environmental noise within a deep neural network acoustic model. A deep neural network is used to predict the acoustic environment in which the system in being used. The discriminative embedding generated at the bottleneck layer of this network is then concatenated with traditional acoustic features as input to a deep neural network acoustic model. Through a series of experiments on Resource Management, CHiME-3 task, and Aurora4, we show that the proposed approach significantly improves speech recognition accuracy in noisy and highly reverberant environments, outperforming multi-condition training, noise-aware training, i-vector framework, and multi-task learning on both in-domain noise and unseen noise.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.