Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression-Based Compressed Sensing (1601.01654v1)

Published 7 Jan 2016 in cs.IT and math.IT

Abstract: Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the literature on deterministic signals aim at bridging this gap through devising compressed sensing decoders that employ compression codes. This paper focuses on structured stochastic processes and studies the application of rate-distortion codes to compressed sensing of such signals. The performance of the formerly-proposed compressible signal pursuit (CSP) algorithm is studied in this stochastic setting. It is proved that in the very low distortion regime, as the blocklength grows to infinity, the CSP algorithm reliably and robustly recovers $n$ instances of a stationary process from random linear projections as long as their count is slightly more than $n$ times the rate-distortion dimension (RDD) of the source. It is also shown that under some regularity conditions, the RDD of a stationary process is equal to its information dimension (ID). This connection establishes the optimality of the CSP algorithm at least for memoryless stationary sources, for which the fundamental limits are known. Finally, it is shown that the CSP algorithm combined by a family of universal variable-length fixed-distortion compression codes yields a family of universal compressed sensing recovery algorithms.

Citations (27)

Summary

We haven't generated a summary for this paper yet.