Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Complexity Pursuit (1110.3561v1)

Published 17 Oct 2011 in cs.IT and math.IT

Abstract: The fast growing field of compressed sensing is founded on the fact that if a signal is 'simple' and has some 'structure', then it can be reconstructed accurately with far fewer samples than its ambient dimension. Many different plausible structures have been explored in this field, ranging from sparsity to low-rankness and to finite rate of innovation. However, there are important abstract questions that are yet to be answered. For instance, what are the general abstract meanings of 'structure' and 'simplicity'? Do there exist universal algorithms for recovering such simple structured objects from fewer samples than their ambient dimension? In this paper, we aim to address these two questions. Using algorithmic information theory tools such as Kolmogorov complexity, we provide a unified method of describing 'simplicity' and 'structure'. We then explore the performance of an algorithm motivated by Ocam's Razor (called MCP for minimum complexity pursuit) and show that it requires $O(k\log n)$ number of samples to recover a signal, where $k$ and $n$ represent its complexity and ambient dimension, respectively. Finally, we discuss more general classes of signals and provide guarantees on the performance of MCP.

Citations (21)

Summary

We haven't generated a summary for this paper yet.