Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Compressed Sensing (1406.7807v3)

Published 30 Jun 2014 in cs.IT and math.IT

Abstract: In this paper, the problem of developing universal algorithms for compressed sensing of stochastic processes is studied. First, R\'enyi's notion of information dimension (ID) is generalized to analog stationary processes. This provides a measure of complexity for such processes and is connected to the number of measurements required for their accurate recovery. Then a minimum entropy pursuit (MEP) optimization approach is proposed, and it is proven that it can reliably recover any stationary process satisfying some mixing constraints from sufficient number of randomized linear measurements, without having any prior information about the distribution of the process. It is proved that a Lagrangian-type approximation of the MEP optimization problem, referred to as Lagrangian-MEP problem, is identical to a heuristic implementable algorithm proposed by Baron et al. It is shown that for the right choice of parameters the Lagrangian-MEP algorithm, in addition to having the same asymptotic performance as MEP optimization, is also robust to the measurement noise. For memoryless sources with a discrete-continuous mixture distribution, the fundamental limits of the minimum number of required measurements by a non-universal compressed sensing decoder is characterized by Wu et al. For such sources, it is proved that there is no loss in universal coding, and both the MEP and the Lagrangian-MEP asymptotically achieve the optimal performance.

Citations (12)

Summary

We haven't generated a summary for this paper yet.