Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From compression to compressed sensing (1212.4210v2)

Published 18 Dec 2012 in cs.IT and math.IT

Abstract: Can compression algorithms be employed for recovering signals from their underdetermined set of linear measurements? Addressing this question is the first step towards applying compression algorithms for compressed sensing (CS). In this paper, we consider a family of compression algorithms $\mathcal{C}_r$, parametrized by rate $r$, for a compact class of signals $\mathcal{Q} \subset \mathds{R}n$. The set of natural images and JPEG at different rates are examples of $\mathcal{Q}$ and $\mathcal{C}_r$, respectively. We establish a connection between the rate-distortion performance of $\mathcal{C}_r$, and the number of linear measurements required for successful recovery in CS. We then propose compressible signal pursuit (CSP) algorithm and prove that, with high probability, it accurately and robustly recovers signals from an underdetermined set of linear measurements. We also explore the performance of CSP in the recovery of infinite dimensional signals.

Citations (33)

Summary

We haven't generated a summary for this paper yet.