Maximum Leaf Spanning Trees of Growing Sierpinski Networks Models (1601.01465v1)
Abstract: The dynamical phenomena of complex networks are very difficult to predict from local information due to the rich microstructures and corresponding complex dynamics. On the other hands, it is a horrible job to compute some stochastic parameters of a large network having thousand and thousand nodes. We design several recursive algorithms for finding spanning trees having maximal leaves (MLS-trees) in investigation of topological structures of Sierpinski growing network models, and use MLS-trees to determine the kernels, dominating and balanced sets of the models. We propose a new stochastic method for the models, called the edge-cumulative distribution, and show that it obeys a power law distribution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.