Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Models for Meso-Scale Structures (1511.08971v1)

Published 29 Nov 2015 in cs.SI and physics.soc-ph

Abstract: Real world complex networks are scale free and possess meso-scale properties like core-periphery and community structure. We study evolution of the core over time in real world networks. This paper proposes evolving models for both unweighted and weighted scale free networks having local and global core-periphery as well as community structure. Network evolves using topological growth, self growth, and weight distribution function. To validate the correctness of proposed models, we use K-shell and S-shell decomposition methods. Simulation results show that the generated unweighted networks follow power law degree distribution with droop head and heavy tail. Similarly, generated weighted networks follow degree, strength, and edge-weight power law distributions. We further study other properties of complex networks, such as clustering coefficient, nearest neighbor degree, and strength degree correlation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.