Entropy in the category of perfect complexes with cohomology of finite length (1601.01064v2)
Abstract: Local and category-theoretical entropies associated with an endomorphism of finite length (i.e., with zero-dimensional closed fiber) of a commutative Noetherian local ring are compared. Local entropy is shown to be less than or equal to category-theoretical entropy. The two entropies are shown to be equal when the ring is regular, and also for the Frobenius endomorphism of a complete local ring of positive characteristic. Furthermore, given a flat morphism of Cohen-Macaulay local rings endowed with compatible endomorphisms of finite length, it is shown that local entropy is "additive". Finally, over a ring that is a homomorphic image of a regular local ring, a formula for local entropy in terms of an asymptotic partial Euler characteristic is given.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.