Papers
Topics
Authors
Recent
2000 character limit reached

Orbital stability of periodic traveling-wave solutions for the regularized Schamel equation

Published 22 Dec 2015 in math.AP | (1512.07181v1)

Abstract: In this work we study the orbital stability of periodic traveling-wave solutions for dispersive models. The study of traveling waves started in the mid-18th century when John S. Russel established that the flow of water waves in a shallow channel has constant evolution. In recent years, the general strategy to obtain orbital stability consists in proving that the traveling wave in question minimizes a conserved functional restricted to a certain manifold. Although our method can be applied to other models, we deal with the regularized Schamel equation, which contains a fractional nonlinear term. We obtain a smooth curve of periodic traveling-wave solutions depending on the Jacobian elliptic functions and prove that such solutions are orbitally stable in the energy space. In our context, instead of minimizing the augmented Hamiltonian in the natural codimension two manifold, we minimize it in a "new" manifold, which is suitable to our purposes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.