Orbital Stability of Periodic Traveling-Wave Solutions for a Dispersive Equation
Abstract: In this paper we establish the orbital stability of periodic traveling waves for a general class of dispersive equations. We use the Implicit Function Theorem to guarantee the existence of smooth solutions depending of the corresponding wave speed. Essentially, our method establishes that if the linearized operator has only one negative eigenvalue which is simple and zero is a simple eigenvalue the orbital stability is determined provided that a convenient condition about the average of the wave is satisfied. We use our approach to prove the orbital stability of periodic dnoidal waves associated with the Kawahara equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.