Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The algebraic functional equation of Riemann's theta function (1512.04415v3)

Published 14 Dec 2015 in math.NT and math.AG

Abstract: We give an algebraic analog of the functional equation of Riemann's theta function. More precisely, we define a `theta multiplier' line bundle over the moduli stack of principally polarized abelian schemes with theta characteristic and prove that its dual is isomorphic to the determinant bundle over the moduli stack. We do so by explicitly computing with Picard groups over the moduli stack. This is all done over the ring R=Z[1/2,i]: passing to the complex numbers, we recover the classical functional equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.