Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Higher theta series for unitary groups over function fields (2110.07001v3)

Published 13 Oct 2021 in math.NT and math.AG

Abstract: In previous work, we defined certain virtual fundamental classes for special cycles on the moduli stack of Hermitian shtukas, and related them to the higher derivatives of non-singular Fourier coefficients of Siegel-Eisenstein series. In the present article, we construct virtual fundamental classes in greater generality, including those expected to relate to the higher derivatives of singular Fourier coefficients. We assemble these classes into "higher" theta series, which we conjecture to be modular. Two types of evidence are presented: structural properties affirming that the cycle classes behave as conjectured under certain natural operations such as intersection products, and verification of modularity in several special situations. One innovation underlying these results is a new approach to special cycles in terms of derived algebraic geometry.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube