The Pareto Regret Frontier for Bandits (1511.00048v1)
Abstract: Given a multi-armed bandit problem it may be desirable to achieve a smaller-than-usual worst-case regret for some special actions. I show that the price for such unbalanced worst-case regret guarantees is rather high. Specifically, if an algorithm enjoys a worst-case regret of B with respect to some action, then there must exist another action for which the worst-case regret is at least {\Omega}(nK/B), where n is the horizon and K the number of actions. I also give upper bounds in both the stochastic and adversarial settings showing that this result cannot be improved. For the stochastic case the pareto regret frontier is characterised exactly up to constant factors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.