Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Budget-Constrained Multi-Armed Bandits with Multiple Plays (1711.05928v1)

Published 16 Nov 2017 in cs.LG, cs.AI, and stat.ML

Abstract: We study the multi-armed bandit problem with multiple plays and a budget constraint for both the stochastic and the adversarial setting. At each round, exactly $K$ out of $N$ possible arms have to be played (with $1\leq K \leq N$). In addition to observing the individual rewards for each arm played, the player also learns a vector of costs which has to be covered with an a-priori defined budget $B$. The game ends when the sum of current costs associated with the played arms exceeds the remaining budget. Firstly, we analyze this setting for the stochastic case, for which we assume each arm to have an underlying cost and reward distribution with support $[c_{\min}, 1]$ and $[0, 1]$, respectively. We derive an Upper Confidence Bound (UCB) algorithm which achieves $O(NK4 \log B)$ regret. Secondly, for the adversarial case in which the entire sequence of rewards and costs is fixed in advance, we derive an upper bound on the regret of order $O(\sqrt{NB\log(N/K)})$ utilizing an extension of the well-known $\texttt{Exp3}$ algorithm. We also provide upper bounds that hold with high probability and a lower bound of order $\Omega((1 - K/N)2 \sqrt{NB/K})$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Datong P. Zhou (6 papers)
  2. Claire J. Tomlin (101 papers)
Citations (56)

Summary

We haven't generated a summary for this paper yet.