Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple and Optimal Policy Design with Safety against Heavy-Tailed Risk for Stochastic Bandits (2206.02969v6)

Published 7 Jun 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We study the stochastic multi-armed bandit problem and design new policies that enjoy both worst-case optimality for expected regret and light-tailed risk for regret distribution. Specifically, our policy design (i) enjoys the worst-case optimality for the expected regret at order $O(\sqrt{KT\ln T})$ and (ii) has the worst-case tail probability of incurring a regret larger than any $x>0$ being upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$, a rate that we prove to be best achievable with respect to $T$ for all worst-case optimal policies. Our proposed policy achieves a delicate balance between doing more exploration at the beginning of the time horizon and doing more exploitation when approaching the end, compared to standard confidence-bound-based policies. We also enhance the policy design to accommodate the "any-time" setting where $T$ is unknown a priori, and prove equivalently desired policy performances as compared to the "fixed-time" setting with known $T$. Numerical experiments are conducted to illustrate the theoretical findings. We find that from a managerial perspective, our new policy design yields better tail distributions and is preferable than celebrated policies especially when (i) there is a risk of under-estimating the volatility profile, or (ii) there is a challenge of tuning policy hyper-parameters. We conclude by extending our proposed policy design to the stochastic linear bandit setting that leads to both worst-case optimality in terms of expected regret and light-tailed risk on the regret distribution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David Simchi-Levi (50 papers)
  2. Zeyu Zheng (60 papers)
  3. Feng Zhu (138 papers)