On computability and disintegration
Abstract: We show that the disintegration operator on a complete separable metric space along a projection map, restricted to measures for which there is a unique continuous disintegration, is strongly Weihrauch equivalent to the limit operator Lim. When a measure does not have a unique continuous disintegration, we may still obtain a disintegration when some basis of continuity sets has the Vitali covering property with respect to the measure; the disintegration, however, may depend on the choice of sets. We show that, when the basis is computable, the resulting disintegration is strongly Weihrauch reducible to Lim, and further exhibit a single distribution realizing this upper bound.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.