Papers
Topics
Authors
Recent
2000 character limit reached

Evolving TSP heuristics using Multi Expression Programming

Published 8 Sep 2015 in cs.AI and cs.NE | (1509.02459v1)

Abstract: Multi Expression Programming (MEP) is an evolutionary technique that may be used for solving computationally difficult problems. MEP uses a linear solution representation. Each MEP individual is a string encoding complex expressions (computer programs). A MEP individual may encode multiple solutions of the current problem. In this paper MEP is used for evolving a Traveling Salesman Problem (TSP) heuristic for graphs satisfying triangle inequality. Evolved MEP heuristic is compared with Nearest Neighbor Heuristic (NN) and Minimum Spanning Tree Heuristic (MST) on some difficult problems in TSPLIB. For most of the considered problems the evolved MEP heuristic outperforms NN and MST. The obtained algorithm was tested against some problems in TSPLIB. The results emphasizes that evolved MEP heuristic is a powerful tool for solving difficult TSP instances.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.