Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Evolutionary Algorithms using Multi Expression Programming (2109.13737v1)

Published 22 Aug 2021 in cs.NE and cs.AI

Abstract: Finding the optimal parameter setting (i.e. the optimal population size, the optimal mutation probability, the optimal evolutionary model etc) for an Evolutionary Algorithm (EA) is a difficult task. Instead of evolving only the parameters of the algorithm we will evolve an entire EA capable of solving a particular problem. For this purpose the Multi Expression Programming (MEP) technique is used. Each MEP chromosome will encode multiple EAs. An nongenerational EA for function optimization is evolved in this paper. Numerical experiments show the effectiveness of this approach.

Citations (112)

Summary

We haven't generated a summary for this paper yet.