Papers
Topics
Authors
Recent
2000 character limit reached

A concave pairwise fusion approach to subgroup analysis (1508.07045v1)

Published 27 Aug 2015 in stat.ME

Abstract: An important step in developing individualized treatment strategies is to correctly identify subgroups of a heterogeneous population, so that specific treatment can be given to each subgroup. In this paper, we consider the situation with samples drawn from a population consisting of subgroups with different means, along with certain covariates. We propose a penalized approach for subgroup analysis based on a regression model, in which heterogeneity is driven by unobserved latent factors and thus can be represented by using subject-specific intercepts. We apply concave penalty functions to pairwise differences of the intercepts. This procedure automatically divides the observations into subgroups. We develop an alternating direction method of multipliers algorithm with concave penalties to implement the proposed approach and demonstrate its convergence. We also establish the theoretical properties of our proposed estimator and determine the order requirement of the minimal difference of signals between groups in order to recover them. These results provide a sound basis for making statistical inference in subgroup analysis. Our proposed method is further illustrated by simulation studies and analysis of the Cleveland heart disease dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.