Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel subgroup analysis of high-dimensional data via M-regression (2005.00248v1)

Published 1 May 2020 in stat.ME

Abstract: It becomes an interesting problem to identify subgroup structures in data analysis as populations are probably heterogeneous in practice. In this paper, we consider M-estimators together with both concave and pairwise fusion penalties, which can deal with high-dimensional data containing some outliers. The penalties are applied both on covariates and treatment effects, where the estimation is expected to achieve both variable selection and data clustering simultaneously. An algorithm is proposed to process relatively large datasets based on parallel computing. We establish the convergence analysis of the proposed algorithm, the oracle property of the penalized M-estimators, and the selection consistency of the proposed criterion. Our numerical study demonstrates that the proposed method is promising to efficiently identify subgroups hidden in high-dimensional data.

Summary

We haven't generated a summary for this paper yet.