A sharp smoothness of the conjugation of class P-homeomorphisms to diffeomorphisms (1508.03549v1)
Abstract: Let f be a class P -homeomorphism of the circle. We prove that there exists a piecewise analytic homeomorphism that conjugate f to a one-class P with prescribed break points lying on pairwise distinct orbits. As a consequence, we give a sharp estimate for the smoothness of a conjugation of class P -homeomorphism f of the circle satisfying the (D)-property (i.e. the product of f-jumps in the break points contained in a same orbit is trivial), to diffeomorphism. When f does not satisfy the (D)-property the conjugating homeomorphism is never piecewise C1 and even more it is not absolutely continuous function if the total product of f-jumps in all the break points is non-trivial.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.