Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Selective inference with a randomized response (1507.06739v5)

Published 24 Jul 2015 in math.ST and stat.TH

Abstract: Inspired by sample splitting and the reusable holdout introduced in the field of differential privacy, we consider selective inference with a randomized response. We discuss two major advantages of using a randomized response for model selection. First, the selectively valid tests are more powerful after randomized selection. Second, it allows consistent estimation and weak convergence of selective inference procedures. Under independent sampling, we prove a selective (or privatized) central limit theorem that transfers procedures valid under asymptotic normality without selection to their corresponding selective counterparts. This allows selective inference in nonparametric settings. Finally, we propose a framework of inference after combining multiple randomized selection procedures. We focus on the classical asymptotic setting, leaving the interesting high-dimensional asymptotic questions for future work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.