Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Inference via Marginal Screening for High Dimensional Classification (1906.11382v1)

Published 26 Jun 2019 in stat.ME

Abstract: Post-selection inference is a statistical technique for determining salient variables after model or variable selection. Recently, selective inference, a kind of post-selection inference framework, has garnered the attention in the statistics and machine learning communities. By conditioning on a specific variable selection procedure, selective inference can properly control for so-called selective type I error, which is a type I error conditional on a variable selection procedure, without imposing excessive additional computational costs. While selective inference can provide a valid hypothesis testing procedure, the main focus has hitherto been on Gaussian linear regression models. In this paper, we develop a selective inference framework for binary classification problem. We consider a logistic regression model after variable selection based on marginal screening, and derive the high dimensional statistical behavior of the post-selection estimator. This enables us to asymptotically control for selective type I error for the purposes of hypothesis testing after variable selection. We conduct several simulation studies to confirm the statistical power of the test, and compare our proposed method with data splitting and other methods.

Summary

We haven't generated a summary for this paper yet.