2000 character limit reached
A discrete log-Sobolev inequality under a Bakry-Emery type condition (1507.06268v3)
Published 22 Jul 2015 in math.PR, cs.IT, and math.IT
Abstract: We consider probability mass functions $V$ supported on the positive integers using arguments introduced by Caputo, Dai Pra and Posta, based on a Bakry--\'{E}mery condition for a Markov birth and death operator with invariant measure $V$. Under this condition, we prove a modified logarithmic Sobolev inequality, generalizing and strengthening results of Wu, Bobkov and Ledoux, and Caputo, Dai Pra and Posta. We show how this inequality implies results including concentration of measure and hypercontractivity, and discuss how it may extend to higher dimensions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.