Papers
Topics
Authors
Recent
2000 character limit reached

Entropy inequalities for random walks and permutations

Published 13 Sep 2021 in math.PR, cs.DM, and math.FA | (2109.06009v3)

Abstract: We consider a new functional inequality controlling the rate of relative entropy decay for random walks, the interchange process and more general block-type dynamics for permutations. The inequality lies between the classical logarithmic Sobolev inequality and the modified logarithmic Sobolev inequality, roughly interpolating between the two as the size of the blocks grows. Our results suggest that the new inequality may have some advantages with respect to the latter well known inequalities when multi-particle processes are considered. We prove a strong form of tensorization for independent particles interacting through synchronous updates. Moreover, for block dynamics on permutations we compute the optimal constants in all mean field settings, namely whenever the rate of update of a block depends only on the size of the block. Along the way we establish the independence of the spectral gap on the number of particles for these mean field processes. As an application of our entropy inequalities we prove a new subadditivity estimate for permutations, which implies a sharp upper bound on the permanent of arbitrary matrices with nonnegative entries, thus resolving a well known conjecture.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.