Equilibrium Fluctuations for a Discrete Atlas Model (1507.04786v1)
Abstract: We consider a discrete version of the Atlas model, which corresponds to a sequence of zero-range processes on a semi-infinite line, with a source at the origin and a diverging density of particles. We show that the equilibrium fluctuations of this model are governed by a stochastic heat equation with Neumann boundary conditions. As a consequence, we show that the current of particles at the origin converges to a fractional Brownian motion of Hurst exponent H=1/4.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.