Papers
Topics
Authors
Recent
2000 character limit reached

Systematics of strength function sum rules (1506.04700v4)

Published 15 Jun 2015 in nucl-th, astro-ph.SR, and nucl-ex

Abstract: Sum rules provide useful insights into transition strength functions and are often expressed as expectation values of an operator. In this letter I demonstrate that non-energy-weighted transition sum rules have strong secular dependences on the energy of the initial state. Such non-trivial systematics have consequences: the simplification suggested by the generalized Brink-Axel hypothesis, for example, does not hold for most cases, though it weakly holds in at least some cases for electric dipole transitions. Furthermore, I show the systematics can be understood through spectral distribution theory, calculated via traces of operators and of products of operators. Seen through this lens, violation of the generalized Brink-Axel hypothesis is unsurprising: one \textit{expects} sum rules to evolve with excitation energy. Furthermore, to lowest order the slope of the secular evolution can be traced to a component of the Hamiltonian being positive (repulsive) or negative (attractive).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.