Exact invariant measures: How the strength of measure settles the intensity of chaos (1506.03269v2)
Abstract: The aim of this paper is to show how extracting dynamical behavior and ergodic properties from deterministic chaos with the assistance of exact invariant measures. On the one hand, we provide an approach to deal with the inverse problem of finding nonlinear interval maps from a given invariant measure. Then, we show how to identify ergodic properties by means of transitions along the phase space via exact measures. On the other hand, we discuss quantitatively how infinite measures imply maps having subexponential Lyapunov instability (weakly chaotic), as opposed to finite measure ergodic maps, that are fully chaotic. In addition, we provide general solutions of maps for which infinite invariant measures are exactly known throughout the interval (a demand from this field). Finally, we give a simple proof that infinite measure implies universal Mittag-Leffler statistics of observables, rather than narrow distributions typically observed in finite measure ergodic maps.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.