Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Critical Behavior of Transition to Chaos: Intermittency Route (2109.14485v4)

Published 29 Sep 2021 in nlin.CD

Abstract: The robustness of the universality class concept of the chaotic transition was investigated by analytically obtaining its critical exponent for a wide class of maps. In particular, we extended the existing one-dimensional chaotic maps, thereby generalising the invariant density function from the Cauchy distribution by adding one parameter. This generalisation enables the adjustment of the power exponents of the density function and superdiffusive behavior. We proved that these generalised one-dimensional chaotic maps are exact (stronger condition than ergodicity) to obtain the critical exponent of the Lyapunov exponent from the phase average. Furthermore, we proved that the critical exponent of the Lyapunov exponent is $\frac{1}{2}$ regardless of the power exponent of the density function and is thus universal. This result can be considered as rigorous proof of the universality of the critical exponent of the Lyapunov exponent for a countably infinite number of maps.

Summary

We haven't generated a summary for this paper yet.