Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant measures for frequently hypercyclic operators (1403.4555v2)

Published 18 Mar 2014 in math.FA and math.DS

Abstract: We investigate frequently hypercyclic and chaotic linear operators from a measure-theoretic point of view. Among other things, we show that any frequently hypercyclic operator T acting on a reflexive Banach space admits an invariant probability measure with full support, which may be required to vanish on the set of all periodic vectors for T; that there exist frequently hypercyclic operators on the sequence space c_0 admitting no ergodic measure with full support; and that if an operator admits an ergodic measure with full support, then it has a comeager set of distributionally irregular vectors. We also give some necessary and sufficient conditions (which are are satisfied by all the known chaotic operators) for an operator T to admit an invariant measure supported on the set of its hypercyclic vectors and belonging to the closed convex hull of its periodic measures. Finally, we give a Baire category proof of the fact that any operator with a perfectly spanning set of unimodular eigenvectors admits an ergodic measure with full support.

Summary

We haven't generated a summary for this paper yet.