Duality between Temporal Networks and Signals: Extraction of the Temporal Network Structures (1505.03044v1)
Abstract: We develop a framework to track the structure of temporal networks with a signal processing approach. The method is based on the duality between networks and signals using a multidimensional scaling technique. This enables a study of the network structure using frequency patterns of the corresponding signals. An extension is proposed for temporal networks, thereby enabling a tracking of the network structure over time. A method to automatically extract the most significant frequency patterns and their activation coefficients over time is then introduced, using nonnegative matrix factorization of the temporal spectra. The framework, inspired by audio decomposition, allows transforming back these frequency patterns into networks, to highlight the evolution of the underlying structure of the network over time. The effectiveness of the method is first evidenced on a toy example, prior being used to study a temporal network of face-to-face contacts. The extraction of sub-networks highlights significant structures decomposed on time intervals.