Papers
Topics
Authors
Recent
2000 character limit reached

Clustering of extreme events created by multiple correlated maxima

Published 7 May 2015 in math.DS and math.PR | (1505.01553v1)

Abstract: We consider stochastic processes arising from dynamical systems by evaluating an observable function along the orbits of the system. The novelty is that we will consider observables achieving a global maximum value (possible infinite) at multiple points with special emphasis for the case where these maximal points are correlated or bound by belonging to the same orbit of a certain chosen point. These multiple correlated maxima can be seen as a new mechanism creating clustering. We recall that clustering was intimately connected with periodicity when the maximum was achieved at a single point. We will study this mechanism for creating clustering and will address the existence of limiting Extreme Value Laws, the repercussions on the value of the Extremal Index, the impact on the limit of Rare Events Points Processes, the influence on clustering patterns and the competition of domains of attraction. We also consider briefly and for comparison purposes multiple uncorrelated maxima. The systems considered include expanding maps of the interval such as Rychlik maps but also maps with an indifferent fixed point such as Manneville-Pommeau maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.